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N U M E R I C A L  S I M U L A T I O N  OF GAS-DYNAMIC P R O C E S S E S  

IN A P I P E  O P E N  AT O N E  E N D  

V. I. Borisenko,  M. A. Kutishchev," and V.  P. Mukoid  UDC 533.6.11 

The problem of sudden opening of one end of a circular pipe containing a pressurized gas is 
considered. A new form of the boundary condition at the open end of the pipe is proposed 
that takes into account the local hydrodynamic drag due to the nonlinearity of the real physical 
problem. The system of gas-dynamic equations is integrated by the Godunov numerical method of 
discontinuity decay. The procedure of numerical realization of the nonlinear boundary condition 
at the open end of the pipe is described in detail. Comparison of the graphs obtained in the 
calculations with ezperimental data indicates that the proposed technique is appropriate. 

I n t r oduc t i on .  The problem of discharge from a circular pipe into a medium with specified constant 
pressure is considered classical in the theory of unsteady flows. The main feature of the problem is the 
occurrence of an oscillation process that gives rise to reverse flows and leads to penetration of the ambient 
gas into the tube. 

The problem was investigated by many authors [1-3]. What the cited papers have in common is that 
constant pressure equal to the pressure at infinity is specified as the boundary condition at the open end of 
the pipe. The remaining gas-dynamic flow parameters at the outlet are determined using the conservation 
laws. The solution thus obtained has the character of an undamped oscillation process, which is inconsistent 
with the experimental data of Levy and Potter [4] since the authors of the theoretical studies did not take 
into account the energy loss at the open end of the pipe due to the flow nonlinearity. 

Voevodin and Satin [5] and Yanshev [6] studied problems of numerical simulation of one-dimensional 
gas flows in a complex pipework with allowance for the local drags introduced only at the joints of neighboring 
one-dimensional segments by specifying internal boundary conditions. The latter, representing the integral 
laws of conservation of mass, momentum, and energy, reduce to solving the problem of discontinuity decay 
at the jump of the cross-sectionai area of the pipe [7-10]. At the ends of the one-dimensionai segments, the 
boundary conditions are specified routinely, ignoring local drags [5, 6]. 

In the present paper, regularities of gas-dynamic pipe flows are investigated with allowance for the 
local drag at the pipe outlet. The problem is solved numerically by the Godunov method of discontinuity 
decay [11]. The procedure of numerical realization of the boundary condition with allowance for the drag 
is described in detail. It is universal and can be used successfully in other numerical methods. Results of 
numerous calculations are presented in graphical form, compared with experimental results, and confirm the 
effectiveness and expediency of the proposed procedure. 
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1. F o r m u l a t i o n  of  t h e  P r o b l e m .  Let a gas at pressure p = p0 and density p = p0 be contained in a 
cylindrical pipe closed by diaphragms.  At the t ime t = 0, the right d iaphragm is removed, and at t > 0, the 
gas begins to discharge into the  ambient  med ium with pressure p = poo. It is required to describe the gas flow 
originating in the pipe. 

Within the framework of the model of an inviscid non-heat-conducting gas, the equations describing 
the unsteady behavior of the pipe ftow have the form [11] 

0a Ob 
o-7 + =0; (1.1) 

a = pu , b - "  pU 2 + p . (1.2) 
p(e + u2/2) pu(e +  2/2) + 

Here e is the internal energy of a unit mass of the gas and u is the velocity in the z direction. The system of 
differential equations (1.1) and (1.2) is closed by the equations of state for an ideal gas: 

P (1.3) e = 1)p' 

where ~e is the adiabatic exponent. 
The nonpenetration condition x = 0 is imposed as the boundary condition at the left boundary u = 0. 

As regards the boundary x = L, according to the modified Bernoulli equation, the difference between the 
"true" pressure at the outlet section and the external pressure p - Poo is equal to the drag. With allowance 
for the direction of the flow, this relation is written as 

P- Poo -- ~p for z -- L, (1.4) 

where ~ is a constant [12] that takes into account local drags of this or that nature. 
2. Procedure of Numerical Solution and Method of Realization of Boundary Conditions. 

To solve the formulated initial boundaxy-value problem, we use the Godunov method of discontinuity decay 
[11]. The traditional notation of the method is adopted. The problem of discontinuity decay is an elementary 
operation for this method. The fdrmulas required for internal nodes of the di~erence grid axe given in [11]. 
We consider the method of realizing the boundary conditions. 

The condition of nonpenetration at the left end of the pipe x = 0 reduces to solving the problem of 
discontinuity decay for symmetrical initial data. The end x = L is identified with a node of the grid j = J. 
The boundary condition at the right end z -- L in the adopted notation is written as 

PJ - poo -  (R1)j IUJIUJ = o. (2.1) 
2 

The relation for the density R1 to the left of the contact discontinuity (in the zone adjacent to the left wave 

Irom the right) is somewhat different from the one in [11]: 

(p la l ) [a l -P l f (P ,  pl,Pl)] 1 if P >  Pl; 
RI (P )  = (2.2) 

(zeP)[o + ( z e -  1)f(P, pl,Pl)/2] -2 if P < Pl, 

Here Pl, Pl, and Cl are the pressure, density, and velocity of sound in the extreme right cell of the difference 
grid and al = al(P, pl, pl) is the mass velocity. To simplify the consideration, we omit  the subscripts, except 
for cx~, and designate f (P)  = f (P,  pl,pl) = (P - p l ) / a l ( P ,  pl,pl) = (P - p)/a(P). The  expression for the 
mass velocity a(P) on the left (shock or rarefaction) wave is given in [11]. 

Supplementing condit ion (2.1) by the condition on the left wave, we obtain the following system of 
transcendental  equations tha t  define P and U: 

IUiU = O; (2.3) 
g - p ~ - ~ R ( g )  2 
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P - p  
U - u +  a(P----)--0. (2.4) 

Thus,  the problem of numerical realization of the boundary condition at the open end of the pipe 
reduces to the problem of discontinuity decay with the dynamic compatibili ty condition (2.4) satisfied on the 
left wave and condition (2.3) satisfied on the right wave. 

System (2.3), (2.4) is a system of the form 

F ( x ) = 1 1 ~ ( x )  x =  

We find the Jacobi matr ix of system (2.5): 

w xl: [~ 

II x' IIx2 :  25, 

Oxl = 1 - ~ R~(P) ,  

Of 1 = -~[UIR(P),  Of 2 = f , (p ) ,  012 
Oz2 Oxl Oz2 

We consider the possible situations: 

= 1 .  

(a) P > p (a shock wave propagates to the left). Using the expressions for a(P) and R(P),  we obtain 

a'(P) - (a~ + 1)p R'(P) = p2[a(P)f'(P) - a'(P)I(P)]. 
4a(P)  ' [a(P) - pf (p) ]2  ' 

(b) P < p (a rarefaction wave propagates to the left): 

R'(P) = [c ( ( ~ -  1)/2)1(P)p [1 - . .(~- 1)Pl '(P) .] 
- c -  ( ( a e -  1 ) [ 2 ) f ( P ) J "  

To determine P and U, we use the Newton iterative process [13]: 

x(O = x ( i - O  _ W - l ( x ( i - 1 ) ) F ( x ( i - 1 ) ) ,  

where 

II II w - '  = 1 , A = 

As an initial approximation,  we should set p(0) = poo and U (~ = u - f (p(0)) ,  which corresponds to the 
condition of full reflection [11]. 

Implement ing the iterative process to convergence, we determine the velocity of the left wave D. If 
D < 0, for "large" values of P ,  U, and R used in the difference scheme, we assume the values calculated by 
the proposed procedure. This case (subsonic flow) is most  interesting for the problem considered here. In the 
opposite case (D >/0), we deal with a supersonic flow regime and set P = p, U = u, and R = p. 

We note that  when the process is described using the equations of acoustics [11], the system 
corresponding to system (2.3), (2.4) has the form 

IVlU P - p  
P - poo - ( p o ~  = O, U - u + - -  - 0 .  

2 poco 

Excluding the pressure on the discontinuity P from consideration, we arrive at the equation for velocity 

r I u I u + u +  p ~ 1 7 6  u = 0 .  
2c0 poco 

The  physically admissible solution has the form 

U = (:1:1 + v '~)co D = 1 T  2~(poo- -p  u'~, 
' co \ poco / 
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where the upper signs correspond to outflow and the lower signs correspond to inflow. In both cases, P = 
p - ( u  - u ) p o c o .  

Obviously, the formulas for calculating the discontinuity decay on the left boundary differ from those 
given above only by signs and the use of "small" values from the extreme left cell. 

3. A n a l y s i s  o f  t h e  C a l c u l a t i o n  R e s u l t s .  A cylindrical pipe of length L = 2 m filled with air at 
pressure p0 = 1.(5- l0 s Pa was considered. The ambient parameters were poo = 10 s Pa and poo = 1.3 kg/m 3. 
The adiabatic exponent is a~ = 1.4. Unless otherwise specified, the parameter  r took the value r = 0.5 when 
the pipe was evacuated and r = 1.2 when it was filled. The internal convergence of the solutions was estimated 
by calculations on a sequence of condensed grids with a number of calculation cells of J = 25, 50, and 100. The 
calculations showed that  an admissible solution can be obtained on a rather coarse grid when the calculation 
domain is divided into 50 calculation intervals (d = 50). 

Figure 1 shows curves of pressure versus t ime at the closed end of the pipe with and without allowance 
for energy losses at the open section. The solid curves are generated by the linearized equations and the dashed 
curves are obtained invoking Eqs. (1.1) and (1.2). For both models, neglect of the hydrodynamic drag at the 
outlet section leads to a stable undamped oscillation regime. The curves obtained by the model proposed are 
characterized by a decrease in the oscillation amplitude, which is in qualitative agreement with experimental 
results. The difference in the amplitude and period of oscillations between the linear and nonlinear models is 
due to the different propagation velocities of compression and rarefaction waves. 

The numerical results (the solid curve refers to the linear model and the dotted curve to the nonlinear 
model) and the experimental results of [4] (dashed curve) are shown in Fig. 2. There is good qualitative and 
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quantitative agreement between the experimental results and the results obtained by the nonlinear model 
(1.1)-(1.4). The linear model is inadequate. 

The curves in Fig. 3 are generated by the nonlinear model (1.1)-(1.4) and various numerical methods. 
The dotted curve corresponds to the Godunov method and the solid curve corresponds to the Lax-Wendrof[ 
two-step scheme [14]. In both cases, the boundary condition at the open end of the pipe (1.4) was realized by 
the procedure described in Sec. 2. Good agreement of the results is observed. The solid curve shows solution 
oscillations that are typical of high-order accuracy schemes. They are most pronounced when the difference 
grids are made finer. 

Figure 4 shows the results obtained using boundary conditions (1.4) (the dotted curve) and ignoring 
the hydrodynamic drag (the solid curve) for an initial pressure in the pipe of p0 = 5.10 s Pa. Beginning with 
t = 0.02, the behavior of the curves becomes different. Only the solution with boundary condition (1.4) is in 
good qualitative and quantitative agreement with the experimental results (the dashed curve) [15]. 

Thus, in the present work, an effective numerical method is proposed that reduces the non-one- 
dimensional problem of evacuation (tilling) of a pipe to a one-dimensional problem, whose solution agrees 
with experimental data. This method is best suited to the case where it is required to calculate gas-dynamic 
processes in a complex pipework, as is done in [5, 6], since direct calculation of the entire gas flow region is 
difficult. 
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